Burst analysis spectroscopy: a versatile single-particle approach for studying distributions of protein aggregates and fluorescent assemblies.
نویسندگان
چکیده
Many essential cellular functions depend on the assembly and disassembly of macromolecular complexes. The size, form, and distribution of these assemblies can be heterogeneous and complex, rendering their detailed characterization difficult. Here we describe a simple non-correlation-based method capable of directly measuring population distributions at very low sample concentrations. Specifically, we exploit the highest signal-to-noise light bursts from single fluorescent particles transiting a confocal excitation spot to recursively determine the brightness and size distribution of complex mixtures of fluorescent objects. We refer to this method as burst analysis spectroscopy (BAS) and demonstrate the sensitivity of this technique by examining the free-solution, time-resolved distribution of assembled protein aggregates by using two fluorescently labeled proteins: the aggregation-prone, chaperonin-dependent, folding model protein ribulose-bisphosphate carboxylase/oxygenase (RuBisCO), and an amyloidogenic fragment of the yeast prion protein Sup35. We find that the assembly kinetics of both proteins display complex multimodal behavior not readily quantifiable with other methods.
منابع مشابه
Single particle confocal fluorescence spectroscopy in microchannels: dependence of burst width and burst area distributions on particle size and flow rate.
This article presents a non-invasive, optical technique for measuring particulate flow within microfluidic channels. Confocal fluorescence detection is used to probe single fluorescently labeled microspheres (200-930 nm diameter) passing through a focused laser beam at a variety of flow rates (100 - 1000 nL/min). Simple statistical methods are subsequently used to investigate the resulting fluo...
متن کاملStudy of Nanofibrils Formation of Fibroin Protein in Specific Thermal and Acidity Conditions
Background: Amyloid fibrils are insoluble arranged aggregates of proteins that are fibrillar in structure and related to many diseases (at least 20 types of illnesses) and also create many pathologic conditions. Therefore understanding the circumstance of fibril formation is very important.Objectives: This study aims to work on fibrillar structure formation of fibroin (as a model protein)...
متن کاملInhibitory Effect of Cinnamomum Zeylanicum and Camellia Sinensis Extracts on the Hen EggWhite Lysozyme Fibrillation
Background & Aims: Many neurodegenerative diseases including Alzheimer’s, Parkinson and Huntington diseases are associated with the deposition proteinaceous aggregates known as amyloid fibrils. Currently, there is no approved therapeutic agent for inhibition of fibrillar assemblies. One important approach in the development of therapeutic agents is the use of herbal extracts. At the present com...
متن کاملUltrafast laser-probing spectroscopy for studying molecular structure of protein aggregates.
We report the development of a new technique to screen protein aggregation based on laser-probing spectroscopy with sub-picosecond resolution. Protein aggregation is an important topic for materials science, fundamental biology as well as clinical studies in neurodegenerative diseases and translation studies in biomaterials engineering. However, techniques to study protein aggregation and assem...
متن کاملElucidating the aggregation number of dopamine-induced α-synuclein oligomeric assemblies.
Conventional methods to determine the aggregation number, that is, the number of monomers per oligomer, struggle to yield reliable results for large protein aggregates, such as amyloid oligomers. We have previously demonstrated the use of a combination of single-molecule photobleaching and substoichiometric fluorescent labeling to determine the aggregation number of oligomers of human α-synucle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 38 شماره
صفحات -
تاریخ انتشار 2008